An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems

Authors

  • Rashidinia Jalil School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran
  • Shokofeh Sharifi Department of Mathematics and statistics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract:

As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly based on the Green's function approach, has been proved. Numerical illustration demonstrate the applicability of the purposed method. Three test problems have been solved and the computed results have been compared with the results obtained by recent existing methods to verify the accurate nature of our method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

SPLINE COLLOCATION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS

The spline collocation method is used to approximate solutions of boundary value problems. The convergence analysis is given and the method is shown to have second-order convergence. A numerical illustration is given to show the pertinent features of the technique.  

full text

B-Spline Finite Element Method for Solving Linear System of Second-Order Boundary Value Problems

In this paper, we solve a linear system of second-order boundary value problems by using the quadratic B-spline nite el- ement method (FEM). The performance of the method is tested on one model problem. Comparisons are made with both the analyti- cal solution and some recent results.The obtained numerical results show that the method is ecient.

full text

B-Spline Solution of Boundary Value Problems of Fractional Order Based on Optimal Control Strategy

In this paper, boundary value problems of fractional order are converted into an optimal control problems. Then an approximate solution is constructed from translations and dilations of a B-spline function such that the exact boundary conditions are satisfied. The fractional differential operators are taken in the Riemann-Liouville and Caputo sense. Several example are given and the optimal err...

full text

Quartic spline collocation for second-order boundary value problems

Collocation methods based on quartic splines are presented for second-order two-point boundary value problems. In order to obtain a uniquely solvable linear system for the degrees of freedom of the quartic spline collocation approximation, in addition to the boundary conditions specified by the problem, extra boundary or near-boundary conditions are introduced. Non-optimal (fourth-order) and op...

full text

B-SPLINE METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEMS

In this work the collocation method based on quartic B-spline is developed and applied to two-point boundary value problem in ordinary diferential equations. The error analysis and convergence of presented method is discussed. The method illustrated by two test examples which verify that the presented method is applicable and considerable accurate.

full text

b-spline finite element method for solving linear system of second-order boundary value problems

in this paper, we solve a linear system of second-order boundary value problems by using the quadratic b-spline nite el- ement method (fem). the performance of the method is tested on one model problem. comparisons are made with both the analyti- cal solution and some recent results.the obtained numerical results show that the method is ecient.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  27- 46

publication date 2018-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023